本文主要是对照scikit-learn的preprocessing章节结合代码简单的回顾下预处理技术的几种方法,主要包括标准化、数据最大最小缩放处理、正则化、特征二值化和数据缺失值处理。内容比较简单,仅供参考!
首先来回顾一下下面要用到的基本知识。 ## 一、知识回顾 均值公式: \[\bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i}\] 方差公式: \[s^{2}=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\] 0-范数,向量中非零元素的个数。 1-范数: \[||X||=\sum_{i=1}^{n}|x_{i}|\] 2-范数: \[||X||_{2}=(\sum_{i=1}^{n}x_{i}^{2})^{\frac{1}{2}}\] p-范数的计算公式: \[||X||_{p}=(\sum_{i=1}^{n}x_{i}^{p})^{\frac{1}{p}}\]
数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差。实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化。
二、标准化(Standardization),或者去除均值和方差进行缩放
公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行.
将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。
首先说明下sklearn中preprocessing库里面的scale函数使用方法:
|
|
根据参数的不同,可以沿任意轴标准化数据集。 参数解释:
- X:数组或者矩阵
- axis:int类型,初始值为0,axis用来计算均值 means 和标准方差 standard + deviations. 如果是0,则单独的标准化每个特征(列),如果是1,则标准化每个观测样本(行)。
- with_mean: boolean类型,默认为True,表示将数据均值规范到0
- with_std: boolean类型,默认为True,表示将数据方差规范到1
一个简单的例子
假设现在我构造一个数据集X,然后想要将其标准化。下面使用不同的方法来标准化X:
方法一:使用sklearn.preprocessing.scale()函数
方法说明:
- X.mean(axis=0)用来计算数据X每个特征的均值;
- X.std(axis=0)用来计算数据X每个特征的方差;
- preprocessing.scale(X)直接标准化数据X。
将代码整理到一个文件中:
|
|
最后X_scale的值和X1的值是一样的,前面是单独的使用数学公式来计算,主要是为了形成一个对比,能够更好的理解scale()方法。
方法2:sklearn.preprocessing.StandardScaler类
该方法也可以对数据X进行标准化处理,实例如下:
|
|
这两个方法得到最后的结果都是一样的。
三、将特征的取值缩小到一个范围(如0到1)
除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。
使用这种方法的目的包括:
- 1、对于方差非常小的属性可以增强其稳定性;
- 2、维持稀疏矩阵中为0的条目。
下面将数据缩至0-1之间,采用MinMaxScaler函数
|
|
最后输出:
|
|
测试用例:
|
|
注意:这些变换都是对列进行处理。
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
|
|
四、正则化(Normalization)
正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。
该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。
方法1:使用sklearn.preprocessing.normalize()函数
|
|
方法2:sklearn.preprocessing.StandardScaler类
|
|
然后使用正则化实例来转换样本向量:
|
|
两种方法都可以,效果是一样的。
五、二值化(Binarization)
特征的二值化主要是为了将数据特征转变成boolean变量。在sklearn中,sklearn.preprocessing.Binarizer函数可以实现这一功能。实例如下:
|
|
Binarizer函数也可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0,实例代码如下:
|
|
六、缺失值处理
由于不同的原因,许多现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。
下面是使用均值来处理的实例:
|
|
Imputer类同样支持稀疏矩阵:
|
|
sklearn相关英文版本:Preprocessing data 中文版本:数据预处理
本文提取自:http://blog.csdn.net/dream_angel_z/article/details/49406573